USN

M.Tech. Degree Examination, Dec.2013/Jan.2014

Digital Circuits and Logic Design

Time: 3 hrs. Note: Answer any FIVE full questions. Max. Marks:100

Explain the weighted sum concept of threshold gate with an example. 1

(05 Marks)

Prove that every threshold function is Unate.

(05 Marks)

- Determine whether the function $f(x_1, x_2, x_3, x_4) = \sum_{i=0}^{\infty} (0, 1, 3, 4, 5, 6, 7, 12, 13)$ is a threshold b. function and if it is find a weight threshold vector.
- What is a fault table? Explain how this helps in fault detection with an example. (04 Marks) 2
 - Given the fault table shown in the table Q2(b), where z denotes the fault free output for the corresponding test, find the minimal set of tests to detect all single faults. Find a preset set of tests to locate all single faults and show the corresponding fault dictionary. Find the minimal adaptive fault-location experiment.

fault-location experiment.							
	Faults Test	f_1	\mathbf{f}_2	f_3	f4	f ₅	z
Ì	Tı			1	1	1	0
1	$\frac{-T_2}{T_2}$	1	1			<u> </u>	1
		T -			1	1	1
	T.	\vdash	1	1	Π		0
	T.	 	1		†-	1	1

Table.Q2(b)

What are the classes of faults? Define each.

(04 Marks)

Using path sensitization method, determine the test vectors for the s-a-1 faults at g and h in 3 the circuit shown in Fig.Q3(a) below:

- Use the map method to find a minimal set of tests for multiple faults for the two level AND-OR realization of the function: f(w, x, y, z) = wz' + xy' + w'x + wx'y. (04 Marks)
- Differentiate between critical and sub-critical errors.

Define: i) Restoring organs, ii) Boolean differences. 4 a.

(04 Marks)

- Explain the basic structure of a Quadded network with the help of diagrams. b.
- (06 Marks)
- What are compatible states? For the tabular column Table.Q4(c) shown machine M. Find the augmented machine and corresponding minimal machines.

DC.	NS,	Z
PS	x = 0	$_{\mathbf{X}} = 1$
A	A, 0	C, 0
В	B, 0	В, -
C	B, 0	A, 1

Table.Q4(c)

- 5 a. i) Find the equivalence partition for the machine shown in Table Q5(a).
 - ii) Show a standard form of the corresponding reduced machine.

iii) Find a minimum length sequence that distinguishes state B.

(10 Marks)

PS	NS,	Z			
	x = 0	x = 1			
Α	B, 1	H, 1			
В	F, 1	D, 1			
C	D, 0	E, 1			
D	C, 0	F, 1			
E	D, 1	C, 1			
F	C, 1	C, 1			
$\mid \mathbf{G} \mid$	C, 1	D, 1			
Н	C, 0	A, 1			

PS	NS, Z			
13	I_1	I_2	I ₃	I ₄
Α	_	C, 1	E, 1	B, 1
В	E, 0	-	-	_
C	F, 0	F, 1	-	-
D	-	-	B, 1	-
E	-	F, 0	A, 0	D, 1
F	C, 0	-	B, 0	C, 1
Table O5(b)				

Table.Q5(a)

- b. What is merger graph? Draw the merger graph for the incompletely specified machine M shown in Table.Q5(b). (10 Marks)
- 6 a. Determine the set of all mm pairs for the machine shown in Table.Q6(a).

(10 Marks)

PS	X_1X_2	NS	Z	
	00	01	10	Z
A	C	В	D	0
В	A	E	C	0
C	Е	В	D	0
D	О	C	Е	0
E	E	D	В	1
Table.Q6(a)				

	PS	N	7			
	13	$x = 0 \mid x = 1$		Z	İ	
	Α	G	D	1		
	В	H	C G	0	١	
	C	F	G	l t		
	D	Е	G	0	l	
Ī	E	C	В	1	l	
-	F	C C A	Α	0	l	
	G	Α	E	1		
Į	H	В	F	0		

Table.Q6(b)

b. For the machine shown in Table.Q6(b), obtain a serial decomposition.

(10 Marks)

7 a. For the machine shown in Table.Q7(a), find the shortest homing sequence. Determine whether or not synchronizing sequence exists and if it does exist, find the shortest one.

(10 Marks)

PS	NS	Z		
	x = 0	x = 1		
Α	A, 1	E, 0		
В	A, 0	C, 0		
C	B, 0	D, 1		
D	C, 1	C, 0		
E	C, 0	D, 0		
T 11 054				

Table.Q7(a)

$$\begin{array}{|c|c|c|c|c|c|} \hline PS & NS & Z \\ \hline x = 0 & x = 1 \\ \hline A & C, 0 & A, 1 \\ B & D, 0 & C, 1 \\ C & B, 1 & D, 1 \\ D & C, 1 & A, 0 \\ \hline \hline Table O7(b) \\ \hline \end{array}$$

b. Explain the adaptive distinguishing experiment by considering the machine shown in